Stereoselective syntheses of d-ribo- and L-lyxo-phytosphingosine

Yun-Long Li, Xiu-Hong Mao and Yu-Lin Wu*
State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Abstract

D-ribo-Phytosphingosine has been synthesized from D-galactose via the key intermediate $\mathbf{5}$, itself prepared by stereoselective prop-2-ynylation with prop-2-ynyl bromide and zinc, and L-lyxo-phytosphingosine has been synthesized from D-xylose via the key intermediate 18, itself prepared by a $\mathrm{CBr}_{4}-\mathrm{Ph}_{3} \mathrm{P}-\mathrm{Zn}$ Wittig reaction and debromination. These key chiral intermediates, 5 and 18, have potential as intermediates for the synthesis of other phytosphigosine derivatives.

Phytosphingosines, a group comprised of the long-chain bases of various glycosphingolipids, together with sphingosine are important membrane components and appear to function as endogenous media for cell recognition and cell regulation. ${ }^{1}$ Thus, there is a great deal of interest in studies directed towards their synthesis. ${ }^{2}$ Recently, many new glycosphingolipids have been isolated from marine biological sources which exhibit significant antitumour, immunostimulatory, neuritogenic and growth-inhibitory activity etc. ${ }^{3}$ The structure of the phytosphingosine component incorporated in the ceramide of these glycosphingolipids is quite complex, as shown below.

$\mathrm{R}=\mathrm{C}_{14} \mathrm{H}_{29}$	D--ribo-phytosphyngosine 1	
cis - $\left(\mathrm{CH}_{2}\right)_{x} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{y} \mathrm{Me}$	$x+y=15$	See Lit. $3 a$
trans $\cdot \mathrm{MeCH}=\mathrm{CHC}_{11} \mathrm{H}_{23}$		See Lit. 3b
$\left(\mathrm{CH}_{2}\right)_{11} \mathrm{CHMe}_{2}$ etc.		See Lit. 3c

Earlier we described a chiral synthesis of D-erythrosphingosine starting from D-mannitol ${ }^{4}$ and a chiron approach to the precursors of all four sphingosine stereoisomers. ${ }^{5}$ Here, we report the stereoselective synthesis of D-ribo- 1 and $\mathrm{L}-l y x o-$ phytosphingosine 2 , work directed towards probing the difference in biologically activity caused by changing the configuration of the 4-hydroxy group.

L-fyxo-phytosphingosine 2
Any synthesis of phytosphingosine has to take into consideration the establishment of chiral centres and chain elongation. Since differences in the various phytosphingosines occur mainly in the aliphatic substituent, we wished to find a common chiral intermediate which, by chain elongation via an acetylenic intermediate (see Scheme 1) could lead to a general synthesis.

Synthesis of D-ribo-phytosphingosine 1 from D-galactose

We recently reported that prop-2-ynylation of x-alkoxy aldehydes with prop-2-ynyl bromide and zinc provided mainly the erythro product. ${ }^{6}$ We exploited this stereoselectivity in the synthesis of 1 . Thus, $2,4-O$-ethylidene-D-threose 4 , prepared

from D-galactose, ${ }^{7}$ was treated with prop-2-ynyl bromide in the presence of zinc to give compound 5 in 85% yield (erythro:threo, 11.7:1, total yield 89%) after separation by chromatography (Scheme 2). The erythro configuration of 5 was confirmed by a 2D NMR spectroscopic study of its acetal 7 .

7
Schmidt et al. ${ }^{8}$ have reported that in the synthesis of D-ribophytosphingosine, reaction of $2,4-O$-benzylidene-D-threose with tetradecylmagnesium bromide gave a $1: 1$ mixture of the erythro product, D-arabino-octadecanetetrol and the threo product, L-xylo-octadecanetetrol.

Scheme 2 Reagents and conditions: i, ref. 7; ii, prop-2-ynyl bromide, zinc, DMF ether, $85 \%(5: 6=11.7: 1)$

Substitution at the terminal alkyne of 5 with 1-bromoundecane yielded compound $\mathbf{8}$ in 74% yield. The regioselective mesylation of the $2-\mathrm{OH}$ was achieved as in the literature ${ }^{8}$ in 88% yield, although a 5.5% yield of bis-mesylated product was also isolated. However, treatment of 9 a with sodium azide in DMF afforded compound $\mathbf{1 0}$ only in very low yield, probably because of steric effects arising from the prop-2-ynyl chain. Triflation of compound 8 with triflic anhydride at $-78^{\circ} \mathrm{C}$ occurred with the same regioselectivity and the resulting crude reaction mixture was treated directly with

Scheme 3 Reagents and conditions: i, $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{Br}$, BuLi, THF HMPA, 74%; ii, for 9 a: MsCl , pyr., $-30^{\circ} \mathrm{C}$; for 9 b : $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{pyr}^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$; iii, NaN_{3}, DMF, room temp.; iv, $90 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$; v, $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$
sodium azide in DMF at room temperature to form the 2-azide 10 and the 2,4-diazide in a ratio of $c a .5: 1$. Deprotection of the azide $\mathbf{1 0}$ by treatment with acid and subsequent reduction of the azide and alkyne groups in the presence of $\mathrm{Pd}-\mathrm{C}$ furnished the natural D-ribo-phytosphingosine 1.

Synthesis of L-lyxo-phytosphingosine 2 from D-xylose

For the synthesis of L-lyxo-phytosphingosine, $2,3: 4,5-\mathrm{di}-O$ -isopropylidene-D-xylose ${ }^{9} 13$ was converted into the alkyne 15 by Wittig reaction and debromination with BuLi. ${ }^{10}$ Compound 15 was then treated with Grignard reagent to transform ${ }^{11}$ regioselectively the terminal acetonide into the tert-butyl hydroxyalkyl ether 16 in 52% yield. The free $2-\mathrm{OH}$ of compound 16 was then subjected to mesylation and $S_{N} 2$ displacement using sodium azide to give compound 18 , which was subsequently treated with 1-bromododecane to afford the terminal alkyne substituted product 19. Deprotection by acidic treatment and subsequent reduction of both the azide and alkyne groups in the presence of $\mathrm{Pd}-\mathrm{C}$ furnished $\mathrm{L}-\mathrm{ly}$ xophytosphingosine 2.

Experimental

Melting points are uncorrected. Optical rotations, recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$, were measured on a Perkin-Elmer 241 MC Autopol polarimeter. IR spectra were obtained on an IR440 or Perkin-Elmer 983 spectrophotometer. ${ }^{1}$ H NMR spectra were taken at a Varian EM-390, AMX-300 or AMX-600 spectrometer; J values given in Hz . Mass spectra were obtained on a HP 5989A spectrometer. Microanalyses were carried out by the Microanalytic Laboratory at the Institute. Flash column chromatography was performed on silica gel ($10-40 \mu \mathrm{~m}$).

($2 R, 3 R, 4 R$)-1,3-O-Ethylidenehept-6-yne-1,2,3,4-tetrol 5 and ($2 R, 3 R, 4 S$)-1,3-O-ethylidenehept-6-yne-1,2,3,4-tetrol 6

To a stirred mixture of the aldehyde dimer $4(1.46 \mathrm{~g}, 10 \mathrm{mmol})$ and prop-2-ynyl bromide ($2.23 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) in $\mathrm{DMF}-\mathrm{Et}_{2} \mathrm{O}$ ($1: 1 ; 20 \mathrm{~cm}^{3}$) was slowly added zinc dust ($1.97 \mathrm{~g}, 30 \mathrm{mmol}$). An exothermic reaction started within a few minutes and brought the mixture to reflux; this was allowed to continue until most of compound 4 had been consumed. The reaction mixture was then poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. Work-up followed by chromatography yielded the title compound $5(1.52 \mathrm{~g}, 85 \%)$ and the corresponding threo product $6(0.13 \mathrm{~g})$. Physical data for compound 5: mp $128-130^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-6.8\left(c \quad 0.9, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350,3290,2100,1405,1170,1130,1060$ and $910 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 1.35(3 \mathrm{H}, \mathrm{d}, J 5.1), 2.05(1 \mathrm{H}, \mathrm{t}, J$ $2.6), 2.49(1 \mathrm{H}$, ddd, $J 2.6,6.3$ and 16.7), $2.59-2.66(3 \mathrm{H}, \mathrm{m}), 3.62$ $(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and 8.0$), 3.80(1 \mathrm{H}, \mathrm{m}), 3.86(1 \mathrm{H}, \mathrm{dd}, J 1.6$ and $12.0), 3.97(1 \mathrm{H}, \mathrm{dt}, J 6.3$ and 8.0$), 4.09(1 \mathrm{H}, \mathrm{dd}, J 1.6$ and 12.0$)$
and $4.75(1 \mathrm{H}, \mathrm{t}, J 5.1) ; m / z 186\left(\mathrm{M}^{+}\right), 185\left(\mathrm{M}^{+}-1\right), 171\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{3}\right), \quad 150\left(\mathrm{M}^{+}-2 \mathrm{H}_{2} \mathrm{O}\right), \quad 125\left(\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{CH}_{3} \mathrm{CHO}$), 99, 73 and 42 (100%) (Found: C, 57.7; H, 7.9. Calc. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 58.05 ; \mathrm{H}, 7.58$). Physical data for the threo product 6: $\mathrm{mp} 127-129^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+9.2\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{1} 3300,3250,2100,1440,1250,1150,1110$ and $1095 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 1.40(3 \mathrm{H}, \mathrm{d}, J 5.1), 2.04(1 \mathrm{H}, \mathrm{t}, J$ $2.6), 2.50(1 \mathrm{H}$, ddd, $J 2.6,5.3$ and 17.0$), 2.61(1 \mathrm{H}$, ddd, $J 2.6$, 5.3 and 17.0), $2.86(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.65(1 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{m}), 3.86$ (1 H , dd, $J 0.9$ and 12.1), $4.02(2 \mathrm{H}, \mathrm{m})$ and $4.81(1 \mathrm{H}, \mathrm{q}, J 5.1)$; $m / \approx 185\left(\mathrm{M}^{+}-1\right), 171\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 125\left(\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{CH}_{3} \mathrm{CHO}$), 103, 100, 99, 88 and $73(100 \%$) (Found: C, $58.2 ; \mathrm{H}$, 7.8. Calc for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 58.05 ; \mathrm{H}, 7.58 \%$).
(2R,3R,4R)-1,3:2,4-Di- O-ethylidenehept-6-yne-1,2,3,4-tetrol 7
A solution of the alcohol $5(62 \mathrm{mg}, 0.33 \mathrm{mmol})$, diethyl acetal ($0.095 \mathrm{~cm}^{3}, 0.66 \mathrm{mmol}$) and toluene-p-sulfonic acid monohydrate (5 mg) in DMF ($2 \mathrm{~cm}^{3}$) was stirred at $40^{\circ} \mathrm{C}$ under N_{2} for 6 h after which it was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with sat. aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was chromatographed to give pure title compound $7(43 \mathrm{mg}, 61 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3290,2100,1420$, $1380,1130,1100,940,890$ and $640 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) 1.37$ $\left(3 \mathrm{H}, \mathrm{d}, J 5.0,4^{\prime}-\mathrm{H}\right), 1.40\left(3 \mathrm{H}, \mathrm{d}, J 5.0,2^{\prime}-\mathrm{H}\right), 2.07(1 \mathrm{H}, \mathrm{t}, J 2.7$, $7-\mathrm{H}), 2.58\left(1 \mathrm{H}\right.$, ddd, $\left.J_{57} 2.7, J_{45}=6.7, J_{55} 17.2,5-\mathrm{H}\right), 2.71(1 \mathrm{H}$, ddd, $\left.J_{57} 2.7, J_{45} 2.9, J_{55} 17.2,5-\mathrm{H}\right), 3.65\left(1 \mathrm{H}, \mathrm{d}, J_{12} 1.9,2-\mathrm{H}\right)$, $3.69\left(1 \mathrm{H}, \mathrm{d}, J_{34} 0.9,3-\mathrm{H}\right), 3.84\left(1 \mathrm{H}, \mathrm{dd}, J_{12} 1.9, J_{11} 12.6,1-\mathrm{H}\right)$, $4.10\left(1 \mathrm{H}\right.$, ddd, $\left.J_{34} 0.9, J_{45} 2.9, J_{45} 6.7,4-\mathrm{H}\right), 4.13\left(1 \mathrm{H}, \mathrm{d}, J_{11}\right.$ $12.6,1-\mathrm{H}), 4.78\left(1 \mathrm{H}, \mathrm{q}, J 5.0,1^{\prime}-\mathrm{H}\right)$ and $4.99\left(1 \mathrm{H}, \mathrm{q}, J 5.0,3^{\prime}-\right.$ H); irradiation of the resonance at $\delta 4.12$ resulted in collapse of the multiplets at $\delta 3.84,3.69,3.65,2.71$ and 2.58 , giving essentially a singlet, singlet, singlet, double doublet ($J_{55} 17.2, J_{57}$ 2.7), and double doublet $\left(J_{57} 2.7, J_{55} 17.2\right)$, respectively; irradiation of the resonance at $\delta 3.84$ resulted in collapse of the multiplets at $\delta 4.12$, giving essentially a singlet ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$). There are correlations between the resonance at $\delta 4.99\left(3^{\prime}-\mathrm{H}\right)$ and that at $\delta 2.71(5-\mathrm{H})$ and $3.65(2-$ $\mathrm{H})$; there are correlations between the resonance at $\delta 4.13(1-\mathrm{H})$ and that at $\delta 3.84(1-\mathrm{H})$; there are correlations between the resonance at $\delta 4.78\left(1^{\prime}-\mathrm{H}\right)$ and that at $\delta 3.69(3-\mathrm{H})$ and $3.84(1-$ $\mathrm{H}) ; m / \approx 213\left(\mathrm{M}^{+}+1,5.4\right), 212\left(\mathrm{M}^{+}, 1.4\right), 211\left(\mathrm{M}^{+}-1,9.3\right)$, $197\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 33.2\right), 173\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{3}, 9.8\right), 151(12.0), 129$ (19.3) and 87 (100).

($2 R, 3 R, 4 R$)-1,3- O-Ethylideneoctadec-6-yne-1,2,3,4-tetrol 8

To a stirred solution of compound $5(0.85 \mathrm{~g}, 4.57 \mathrm{mmol})$ in dry THF ($25 \mathrm{~cm}^{3}$) was added BuLi ($2.5 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane; 14.98 mmol) dropwise at $-40^{\circ} \mathrm{C}$ followed after 30 min , by a solution of $\mathrm{BrC}_{11} \mathrm{H}_{23}\left(1.52 \mathrm{~cm}^{3}, 6.81 \mathrm{mmol}\right)$ in HMPA $\left(4 \mathrm{~cm}^{3}\right)$. Stirring was continued for 1 h at the same temperature and then

Scheme 4 Reagents and conditions: i, 2 steps according to known method ${ }^{4}$; ii. $\mathrm{HgO}-\mathrm{BF}_{3} \cdot \mathrm{OEt}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$; iii, $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, BuLi, THF: v, MeMgI, $\mathrm{Et}_{2} \mathrm{O}-\mathrm{PhMe}$, reflux; vi, MsCl, pyridine, DMAP. $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;$ vii, NaN ${ }_{3}$, DMF, $\mathrm{Bu}_{4} \mathrm{NI}, 110^{\circ} \mathrm{C}$; viii, $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Br}$, LDA, THF HMPA; ix, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} ; \mathrm{x}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$
overnight at room temperature. After this the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the organic layer was separated, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Chromatography of the residue gave the title compound 8 as a solid $(1.15 \mathrm{~g}, 74 \%), \operatorname{mp} 61-62^{\circ} \mathrm{C} ;[x]_{\mathrm{D}}^{20}+2.8$ (c 1.1, CHCl_{3}); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300,1470,1420,1340,1140$, 1100,1060 and $980 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.9)$, $1.34(3 \mathrm{H}, \mathrm{d}, J 5.0), 1.49-1.26(18 \mathrm{H}, \mathrm{m}), 2.17(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.49$
$(4 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 2 \mathrm{OH}), 3.60(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.81(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $3.0,3-\mathrm{H}), 3.85\left(1 \mathrm{H}, \mathrm{dd}, J 0.9\right.$ and $\left.11.8,1^{\prime}-\mathrm{H}\right), 3.92(1 \mathrm{H}, \mathrm{m}, 4-$ H), $4.09(1 \mathrm{H}$, dd, $J 2.0$ and $11.9,1-\mathrm{H})$ and $4.75(1 \mathrm{H}, \mathrm{q}, J 5.0$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right) ; \mathrm{m} / \mathrm{z} 339\left(\mathrm{M}^{+}-1,2.6\right), 325\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 2.5\right), 279$ (3.3), 253 (9.3), 235 (22.4), 147 (32.5) and 103 (100) (Found: C, $70.6 ; \mathrm{H}, 10.7$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{4}: \mathrm{C}, 70.55 ; \mathrm{H}, 10.66 \%$).

($2 R, 3 R, 4 R$)-2- O-Methylsulfonyl-1,3- O-ethylideneoctadec-6-yne-1,2,3,4-tetrol 9a and ($2 R, 3 R, 4 R$)-2,4-di- O-methylsulfonyl-1,3- O-ethylideneoctadec-6-yne-1,2,3,4-tetrol

To a solution of $\mathbf{8}(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ in dry pyridine $\left(4 \mathrm{~cm}^{3}\right)$ at $-30^{\circ} \mathrm{C}$ was added methanesulfonyl chloride $\left(0.025 \mathrm{~cm}^{3}\right.$, 0.29 mmol). The mixture was stirred for 12 h at $-30^{\circ} \mathrm{C}$ and then warmed to room temperature. The pyridine was removed by evaporation with toluene and the residue was purified by flash column chromatography to give title compound 9a (108 $\mathrm{mg}, 88 \%$) and 2,4-dimethylated product (8 mg). Physical data for compound 9a: $[\alpha]_{\mathrm{D}}^{20}-22.9\left(c 1.9, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3500,1420,1375,1180,1085,1060,920$ and $760 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.4), 1.26-1.50(18 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{d}, J$ $\left.5.1, \mathrm{CH}_{3} \mathrm{CH}\right), 2.17(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.49(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.64(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.71(1 \mathrm{H}, \mathrm{dd}, J 1.3$ and $9.1,3-$ $\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.93(1 \mathrm{H}, \mathrm{dd}, J 0.9$ and $13.2,1-\mathrm{H}), 4.38$ $\left(1 \mathrm{H}, \mathrm{dd}, J 1.5\right.$ and $\left.13.3,1^{\prime}-\mathrm{H}\right), 4.76\left(1 \mathrm{H}, \mathrm{q}, J 5.1, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $4.81(1 \mathrm{H}, \mathrm{d}, J 1.3,2-\mathrm{H}) ; m / z 419\left(\mathrm{M}^{+}-1,4.8\right), 401\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}+1,1.7\right), 309$ (5.5), 279 (9.7), 223 (23.4), 181 (37.2), 100 (100) and 85 (71.6). Physical data for the 2,4 -dimethylated product: mp $110-112^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}^{20}-43.4$ (c $\left.0.4, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1340,1180,1090,1010$ and $970 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.8), 1.26-1.52(18 \mathrm{H}, \mathrm{m}), 1.40(3 \mathrm{H}, \mathrm{d}, J$ $\left.5.1, \mathrm{CH}_{3} \mathrm{CH}\right), 2.17(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.72(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.92(1 \mathrm{H}$, $\left.\mathrm{m}, 5^{\prime}-\mathrm{H}\right), 3.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.90(1$ $\mathrm{H}, \mathrm{dd}, J 0.9$ and $13.5,1-\mathrm{H}), 4.10(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $8.4,3-\mathrm{H})$, $4.56\left(1 \mathrm{H}, \mathrm{dd}, J 1.7\right.$ and $\left.13.5,1^{\prime}-\mathrm{H}\right), 4.73(1 \mathrm{H}, \mathrm{d}, J 1.2,2-\mathrm{H})$ and $4.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}, 4-\mathrm{H}\right) ; m / z 495\left(\mathrm{M}^{+}-1,3.3\right), 417\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{3} \mathrm{SO}_{2}, 3.9\right), 401$ (48.1), 387 (2.9), $341\left(\mathrm{M}^{+}-\mathrm{C}_{11} \mathrm{H}_{23}\right.$, 4.1), 305 (11.6), 277 (25.5) and 69 (100).
($2 S, 3 S, 4 R$)-2-Azido-1,3-O-ethylideneoctadec-6-yne-1,3,4-triol 10 and ($2 S, 3 R, 4 S$)-2,4-diazido-1,3- O-ethylideneoctadec-6-yne-1,3-diol
A solution of compound $\mathbf{8}(700 \mathrm{mg}, 2.06 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~cm}^{3}$) was cooled to $-78^{\circ} \mathrm{C}$ and diluted with dry pyridine (1 cm^{3}). A solution of trifluoromethanesulfonic anhydride (0.36 $\left.\mathrm{cm}^{3}, 2.16 \mathrm{mmol}\right)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added to the mixture over 40 min under N_{2} after which the mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred at that temperature for an additional 1 h . It was then neutralized at $0^{\circ} \mathrm{C}$ with sat. aq. NaHCO_{3}. The organic layer was processed in the usual way and after co-evaporation with toluene, the residue was used directly in the next step.

To a solution of the crude compound 9b in dry DMF (10 cm^{3}) was added sodium azide ($1.62 \mathrm{~g}, 24.91 \mathrm{mmol}$). The mixture was stirred at room temperature overnight after which it was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by flash column chromatography to yield title compound $10(616 \mathrm{mg}, 82 \%$ in 2 steps) and the 2,4 -diazide $(123 \mathrm{mg})$. Physical data for compound 10: $[x]_{\mathrm{D}}^{20}+15.7$ (c 2.9, CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3400,2100,1460,1405,1280,1135,1090$ and $1030 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.4), 1.26-1.52(18 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}$, $\left.J 5.2, \mathrm{CH}_{3} \mathrm{CH}\right), 2.17(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.56(2$ $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.47(1 \mathrm{H}, \mathrm{dd}, J 10.6$ and 10.6$), 3.53(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and 9.5$), 3.62(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 10.1$), 3.92(1 \mathrm{H}$, ddd, $J 4.0,6.4$ and 10.4$), 4.22(1 \mathrm{H}, \mathrm{dd}, J 5.0$ and 10.8$)$ and $4.66(1 \mathrm{H}, \mathrm{q}, J 5.2)$; $m / z 366\left(\mathrm{M}^{+}+1,6.4\right), 365\left(\mathrm{M}^{+}, 5.1\right), 350\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, $0.9), 336\left(\mathrm{M}^{+}-\mathrm{N}_{2}-1,2.1\right), 322\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CHO}+1\right.$, 3.0), 294 (6.5), 264 (17.7) and 224 (61.4) (Found: C. 66.1; H, 9.8;

N, 11.4. Calc. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 65.72; $\mathrm{H}, 9.65 ; \mathrm{N}, 11.50 \%$). Physical data for the 2,4-diazide: $[\alpha]_{\mathrm{D}}^{20}+8.3\left(c 0.6, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2100,1460,1410,1380,1250,1160,1105$ and $1040 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.8), 1.27-1.46(18 \mathrm{H}$, $\mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{CH} \mathrm{CH}), 2.18(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.61(2 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{dd}, J 10.7$ and 10.8$), 3.60(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 10.2), $3.71(1 \mathrm{H}, \mathrm{m}), 3.91$ (1 H , dd, $J 5.4$ and 5.4), $4.25(1 \mathrm{H}$, ddd, $J 5.6,10.6$ and 16.2$)$ and $4.66(1 \mathrm{H}, \mathrm{q}, J 5.0) ; m / z 391\left(\mathrm{M}^{+}+1\right.$, 1.3), $348\left(\mathrm{M}^{+}-\mathrm{N}_{2}-\mathrm{CH}_{3}+1,13.1\right), 320\left(\mathrm{M}^{+}-2 \mathrm{~N}_{2}-\right.$ $\left.\mathrm{CH}_{3}+1,10.1\right), 304(4.7), 276$ (9.9), 263 (11.0), 149 (17.1) and 55 (100).

(2S,3S,4R)-2-Azidooctadec-6-yne-1,3,4-triol 11

The acetal $10(70 \mathrm{mg}, 0.19 \mathrm{mmol})$ was treated with 90% $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(5 \mathrm{~cm}^{3}\right)$ at room temperature for 3 h after which the mixture was evaporated to dryness. The residue was purified by column chromatography on silica gel to give title compound 11 ($35 \mathrm{mg}, 54 \%$); $[\alpha]_{\mathrm{D}}^{20}+17.2\left(c 0.7, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3400$, $2100,1470,1380,1200,1130,1080$ and $900 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.2), 1.45-1.27(18 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{m}, 8-$ $\mathrm{H}), 2.59(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $3.754 .20(8 \mathrm{H}, \mathrm{m})$; after addition of $\mathrm{D}_{2} \mathrm{O}$, the multiplet at $\delta 3.75-4.20 \mathrm{ppm}$ collapsed to $5 \mathrm{H} ; \mathrm{m} / \mathrm{z}$ $295\left(\mathrm{M}^{+}-\mathrm{N}_{2}-\mathrm{CH}_{3}-1,0.9\right), 253\left(\mathrm{M}^{+}-\mathrm{HOCH}_{2} \mathrm{~N}_{3}\right.$, $1.1), 235\left(\mathrm{M}^{+}-\mathrm{HOCH}_{2} \mathrm{~N}_{3}-\mathrm{H}_{2} \mathrm{O}, 1.8\right), 223(18.9), 183(9.1)$, 149 (71.5), 129 (56.6) and 43 (100).

(2S,3S,4R)-2-Aminooctadecane-1,3,4-triol 1

$10 \% \mathrm{Pd}-\mathrm{C}(5 \mathrm{mg})$ was added to a solution of the azide $11(30 \mathrm{mg}$, $0.088 \mathrm{mmol})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$. After the reaction vessel had been purged with hydrogen, the mixture was stirred at room temperature overnight, filtered, and the filtrate concentrated. Purification of the residue on a silica gel column eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aq. $\mathrm{NH}_{3}(100: 10: 0.5)$ yield $\mathrm{D}-$ ribo-phytosphingosine $1(26 \mathrm{mg}, 93 \%), \mathrm{mp} 98-100^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}$ +8.9 (c 0.6 , pyridine) $\left[\right.$ lit.,${ }^{8} \mathrm{mp} 95^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+8.5$ (c 1 , pyridine); lit., ${ }^{2 a} \mathrm{mp} 98-101^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}+8.7$ (c 0.8, pyridine) $] ;$ $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ (FT IR) 3400, 1466, 1384, 1205, 1131 and 1072 ; $\delta_{\mathbf{H}}\left({ }^{2} \mathrm{H}_{6}\right]$-DMSO, 300 MHz$) 0.85(3 \mathrm{H}, J 6.8), 1.24(24 \mathrm{H}, \mathrm{m})$, $1.58(2 \mathrm{H}, \mathrm{m}), 3.05(2 \mathrm{H}, \mathrm{m}), 3.39(6 \mathrm{H}, \mathrm{m})$ and $3.54(2 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / z$ (FAB MS) $340\left(\mathrm{M}^{+}+\mathrm{Na}^{+}\right), 318\left(\mathrm{M}^{+}+1\right)$ and $300\left(\mathrm{M}^{+}-\right.$ CH_{3}).

(2R,3R,4S)-6,6-Dibromo-1,2:3,4-di-O-isopropylidenehex-5-

 ene-1,2,3,4-tetrol 14Red mercury(II) oxide ($2.57 \mathrm{~g}, 11.9 \mathrm{mmol}$), boron trifluoridediethyl ether ($1.43 \mathrm{~cm}^{3}, 11.9 \mathrm{mmol}$) and 85% aq. THF ($10 \mathrm{~cm}^{3}$) were stirred vigorously in a flask. A solution of the dithioacetal $12(2.0 \mathrm{~g}, 5.95 \mathrm{mmol})$ in THF ($6 \mathrm{~cm}^{3}$) was added over the course of 30 min under nitrogen to the mixture which was then stirred for 1 h after the addition was complete. During this period the red mercury(iI) oxide gradually dissolved. Diethyl ether (60 cm^{3}) was added to the reaction mixture which was then neutralized with anhydrous sodium carbonate (4.2 g). The salt was filtered off, and the filtrate concentrated to give compound 13 as a syrup. This material was immediately used in the next step.

Triphenylphosphine ($6.24 \mathrm{~g}, 23.8 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a solution of carbon tetrabromide $(3.94 \mathrm{~g}, 11.9 \mathrm{mmol})$ and zinc dust ($0.39 \mathrm{~g}, 5.95 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(35 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h after which the crude aldehyde was added at $0^{\circ} \mathrm{C}$ to it with vigorous stirring. After being stirred for 2 h at $0^{\circ} \mathrm{C}$, the mixture was poured into stirred light petroleum ($400 \mathrm{~cm}^{3}$), and the resulting precipitate was filtered off through a cotton plug and the filtrate concentrated under reduced pressure. The residue was chromatographed on silica gel to afford the title compound 14 ($1.43 \mathrm{~g}, 62 \%$ in 2 steps); $[x]_{\mathrm{D}}^{20}-25.50\left(c 0.3, \mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3400,1630,1450$ and $1380 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right) 1.50(12 \mathrm{H}, \mathrm{s}), 3.80(2 \mathrm{H}, \mathrm{m}), 4.12$
($2 \mathrm{H}, \mathrm{m}$), $4.56(1 \mathrm{H}, \mathrm{t}, J 8.9)$ and $6.48(1 \mathrm{H}, \mathrm{d}, J 8.8) ; m / z 369\left(\mathrm{M}^{+}\right.$ $-\mathrm{CH}_{3}, 4.8$), 313 (9.3), 285 (3.1), 256 (19.8), 227 (9.9), 175 (18.2), 101 (80.9) and 43 (100) (Found: C, 37.6; H, 4.7. Calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{4}: \mathrm{C}, 37.33 ; \mathrm{H}, 4.70 \%$).

(2R,3R,4S)-1,2:3,4-Di- O-isopropylidenehex-5-yne-1,2,3,4tetrol 15

A butyllithium solution ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 6.6 \mathrm{~mol}$) was added dropwise at $-78^{\circ} \mathrm{C}$ to a solution of compound $14(1.05 \mathrm{~g}, 3.0$ mmol) in THF ($20 \mathrm{~cm}^{3}$). The mixture was stirred at the same temperature for 2 h and then allowed to warm to room temperature. The mixture was poured into cold brine to which ether was then added. After the mixture had been partitioned, the aqueous layer was again extracted with ether. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated and the residue was chromatographed to give compound 15 as a white solid ($0.547 \mathrm{~g}, 89 \%$); mp $48{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-28.1\left(c 0.22, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{1} 3250,2100,1460,1380$ and $1070 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 90\right.$ $\mathrm{MHz}) 1.40,1.49(12 \mathrm{H}, 3 \mathrm{~s}), 2.56(1 \mathrm{H}, \mathrm{d}, J 1.8), 4.03(4 \mathrm{H}, \mathrm{m})$ and $4.46\left(1 \mathrm{H}, \mathrm{dd}, J 1.8\right.$ and 7.7); $m / z 212\left(\mathrm{M}^{+}, 5.2\right), 211\left(\mathrm{M}^{+}-1\right.$, 44.0), 153 (17.8), $125(13.3), 101$ (46.5) and 43 (100) (Found: C, 63.6; $\mathrm{H}, 8.2$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4}: \mathrm{C}, 63.70 ; \mathrm{H}, 8.02 \%$).

($2 R, 3 R, 4 S$)-1-tert-Butyl-3,4- O-isopropylidenehex-5-yne-1,2,3,4tetrol 16

Several drops of a solution of MeI ($1.26 \mathrm{~g}, 8.85 \mathrm{mmol}$) in ether (5 cm^{3}) was added to magnesium ($0.22 \mathrm{~g}, 8.85 \mathrm{mmol}$) in ether (5 cm^{3}). Once the reaction had been initiated by gentle heating, the mixture was cooled with a cold-water bath and the remaining MeI in ether was slowly added to it. A solution of the acetonide $15(0.40 \mathrm{~g}, 1.77 \mathrm{~mol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture which was then stirred at $60^{\circ} \mathrm{C}$ for 12 h before being poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. Work-up followed by chromatography gave title compound 16 as a colourless oil $(0.23 \mathrm{~g}, 52 \%) ;[\alpha]_{\mathrm{D}}^{20}-16.4$ (c $\left.0.3, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3450,3300,2100,1460,1380$ and 1060 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 1.02(9 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s})$, $2.07(1 \mathrm{H}, \mathrm{d}, J 2.1), 3.31(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 8.7$), 3.48(1 \mathrm{H}, \mathrm{dd}, J$ 6.5 and 8.7$), 3.80(1 \mathrm{H}, \mathrm{dt}, J 3.4$ and 6.2$), 4.31(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and $7.2)$ and $4.95(1 \mathrm{H}, \mathrm{dd}, J 2.1$ and 7.2$) ; m / z 243\left(\mathrm{M}^{+}+1,6.8\right), 227$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 5.9\right), 187(100), 171$ (26.1) and 129 (32.9) (Found: C. $64.6 ; \mathrm{H}, 9.2$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 64.44 ; \mathrm{H}, 9.15 \%$).

(2R,3R,4S)-1-tert-Butyl-2-O-methylsulfonyl-3,4-O-isopropylidenehex-5-yne-1,2,3,4-tetrol 17

To a solution of compound $16(160 \mathrm{mg}, 0.66 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added pyridine $\left(0.13 \mathrm{~cm}^{3}, 1.58 \mathrm{mmol}\right)$ and $\mathrm{MsCl}\left(0.064 \mathrm{~cm}^{3}, 0.825 \mathrm{mmol}\right)$. The mixture was stirred at room temperature overnight after which work-up furnished the crude mesylate 17. An analytical sample was obtained by flash chromatography; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3250,2950,2100,1460,1360$ and $1070 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 1.22(9 \mathrm{H}, \mathrm{s}), 1.46,1.50(6 \mathrm{H}, 2$ s), $2.56(1 \mathrm{H}, \mathrm{d}, J 2.2), 3.14(3 \mathrm{H}, \mathrm{s}), 3.60(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and $10.2), 3.70(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 10.2$), 4.15(1 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}, \mathrm{dd}, J$ 4.1 and 7.2) and 4.73 (1 H, dd, $J 2.2$ and 7.1); $m / z 281$ (27.6), 255 (8.2), 233 (12.5), $225\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{SO}_{3}, 8.4\right), 199$ (94.8), 183 (25.2), 113 (100) and 95 (35.9).

($2 S, 3 S, 4 S$)-2-Azido-1-tert-butyl-3,4-O-isopropylidenehex-5-yne-1,3,4-triol 18

To a solution of crude compound 17 in DMF ($20 \mathrm{~cm}^{3}$) were added sodium azide ($0.12 \mathrm{~g}, 1.98 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{NI}(40 \mathrm{mg})$. After being stirred at $110^{\circ} \mathrm{C}$ for 40 h , the mixture was diluted with ether and successively washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification of the residue on a silica gel column yielded the azide 18 ($120 \mathrm{mg}, 68 \%$ in 2 steps); $[\alpha]_{\mathrm{D}}^{20}-20.6\left(c 0.33, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3300,2100,1460$, 1380 and $1050 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 1.22(9 \mathrm{H}, \mathrm{s}), 1.46,1.50(6$
$\mathrm{H}, 2 \mathrm{~s}), 2.55(1 \mathrm{H}, \mathrm{d}, J 2.0), 3.50(1 \mathrm{H}, \mathrm{m}), 3.63(2 \mathrm{H}, \mathrm{d}, J 4.0)$, $4.20(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and 6.3$)$ and $4.68(1 \mathrm{H}, \mathrm{dd}, J 2.1$ and 6.4); $m / \approx 251\left(\mathrm{M}^{+}-\mathrm{CH}_{3}-1,0.7\right), 239\left(\mathrm{M}^{+}-\mathrm{N}_{2}, 5.6\right), 224(0.9)$, 196 (5.3), 183 (14.7), 108 (40.3) and 125 (100) (Found: C, 58.1; H, 7.7: N, 15.7. Calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 58.41 ; \mathrm{H}, 7.92 ; \mathrm{N}$, 15.72).

(2S,3S,4S)-2-Azido-1-tert-butyl-3,4-O-isopropylideneoctadec-5-yne-1,3,4-triol 19

To a solution of $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}\left(0.12 \mathrm{~cm}^{3}, 0.84 \mathrm{mmol}\right)$ in THF $\left(10 \mathrm{~cm}^{3}\right)$, was added $\mathrm{BuLi}\left(2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.84 \mathrm{mmol}\right)$ at $-20^{\circ} \mathrm{C}$ under N_{2}, and the resulting solution was stirred for 30 min at the same temperature. To this LDA solution at $-78^{\circ} \mathrm{C}$, a solution of compound $18(160 \mathrm{mg}, 0.60 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise. After the mixture had been stirred for 30 min , a solution of 1 -bromododecane ($0.22 \mathrm{~cm}^{3}, 0.90 \mathrm{mmol}$) in HMPA $\left(2 \mathrm{~cm}^{3}\right)$ was added to it and stirring was continued first at $-78^{\circ} \mathrm{C}$ for 2 h and then at $-78^{\circ} \mathrm{C}$ to room temperature for 4 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ after which the aqueous layer was extracted with ether. The combined extracts were washed with brine, dried and evaporated and the residue was chromatographed to give title compound 19 (214 mg , $82 \%)$; $[\alpha]_{\mathrm{D}}^{20}-30.8\left(c 0.17, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2100,1465$, 1380,1200 and $1060 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 0.88(3 \mathrm{H}, \mathrm{t}, J 6.7)$, $1.23(29 \mathrm{H}, \mathrm{m}), 1.44,1.48(6 \mathrm{H}, 2 \mathrm{~s}), 2.19(2 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J$ 7.3 and 9.5$), 3.59(2 \mathrm{H}, \mathrm{d}, J 3.8), 4.08(1 \mathrm{H}, \mathrm{dd}, J 5.3$ and 6.8$)$ and $4.65(1 \mathrm{H}, \mathrm{m}) ; m / \approx 292\left(\mathrm{M}^{+}-\mathrm{Bu}^{t} \mathrm{OCH}_{2} \mathrm{CHN}_{3}, 67.5\right), 277(61.3)$, 263 (8.4). $230(7.1), 201(10.1), 137(22.6), 121$ (18.4) and $43(100)$.

(2S,3S,4S)-2-Azidooctadec-5-yne-1,3,4-triol 20

Compound 19 ($200 \mathrm{mg}, 0.46 \mathrm{mmol}$) was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ $\left(5 \mathrm{~cm}^{3}\right)$ at room temperature after which for 3 h the mixture was evaporated to dryness. The residue was purified by column chromatography on silica gel to give compound 20 (103 mg , 66%); $[x]_{\mathrm{D}}^{20}+50.95\left(c 0.12, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3350$, $2200,2100,1460$ and $1170 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 0.88(3 \mathrm{H}, \mathrm{t}, J$ $6.5), 1.27(20 \mathrm{H}, \mathrm{m}), 2.23(2 \mathrm{H}, \mathrm{m}), 3.72(2 \mathrm{H}, \mathrm{m}), 3.95(2 \mathrm{H}, \mathrm{m})$ and $4.52(1 \mathrm{H}$, dt, $J 1.9$ and 3.6$) ; m / \approx 340\left(\mathrm{M}^{+}+1,75.5\right), 338$ $\left(\mathrm{M}^{+}-1,4.8\right), 312\left(\mathrm{M}^{+}-\mathrm{N}_{2}+1,7.6\right), 294$ (12.6), 279 (9.7), 264 (11.7), 172 (34.6) and 70 (100) (Found: $m / z 338.2480$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}: m / \sim 338.2444$).

(2S,3S,4S)-2-Aminooctadecane-1,3,4-triol 2

Compound 20 ($18 \mathrm{mg}, 0.053 \mathrm{mmol}$) was hydrogenated by the
procedure described for compound 11 to give L-lyxophytosphingosine $2(13 \mathrm{mg}, 77 \%), \mathrm{mp} 96-98^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-7.1(\mathrm{c}$ 0.4 , pyridine) $\left[\right.$ lit. ${ }^{8} \mathrm{mp} 95^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{20}-6.20(c 1$, pyridine $\left.)\right]$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{1}$ (FT IR) 3332, 1465 and 1072; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO, 300 MHz) $0.86(3 \mathrm{H}, J 6.9), 1.24(24 \mathrm{H}, \mathrm{m}), 1.39(2 \mathrm{H}$, m), $3.08(2 \mathrm{H}, \mathrm{m}), 3.36(6 \mathrm{H}, \mathrm{m})$ and $3.68(2 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}$ MS) $318\left(\mathbf{M}^{+}+1\right), 316\left(\mathbf{M}^{+}-1\right)$ and $300\left(\mathbf{M}^{+}-\mathrm{H}_{2} \mathrm{O}+1\right)$.

Acknowledgements

We are grateful to the Chinese Academy of Sciences and the State Committee of Science and Technology of China for financial support.

References

1 (a) J. M. Kaufer and S. Hakomori, Handbook of Lipid Research: Vol. 3: Spingolipid Biochemistry, Plenum Press. New York, 1983; (b) J. M. Harouse, S. Bhat, S. L. Spttalnik, M. Laughlin, K. Stefano, D. H. Silberberg and F. Gonzalez-Scarano, Science, 1991, 253, 320.

2 (a) T. Murakami, H. Minamikawa and M. Hato, Tetrahedron Lett., 1994, 35, 745; and references cited therein; (b) H. Nakashima, N. Hirata, T. Iwamura, Y. Yamagiwa and T. Kamikawa, J. Chem. Soc., Perkin Trans. I, 1994, 2849
3 (a) R. Higuchi, K. Inukai, J. X. Jhou, M. Honda, T. Komori, S. Tsuji and Y. Nagai, Liebigs Ann. Chem., 1993, 359; (b) R. Ishida, H. Shirahama and T. Matsumoto, Chem., Lett., 1993, 9; (c) T. Natori, M. Morita, K. Akimoto and Y. Koezuka, Tetrahedron, 1994, 50, 2771.
4 X.-L. Sun and Y.-L. Wu, Acta Chim. Sinica, in the press.
5 Y.-L. Li, X.-L. Sun and Y.-L. Wu, Tetrahedron, 1994, 50, 10727.
6 W.-L. Wu, Z.-J. Yao, Y.-L. Li, J.-C. Li, Y. Xia and Y.-L. Wu, J. Org. Chem., in the press.

7 D. H. Ball, J. Org. Chem., 1966, 31, 220.
8 (a) R. R. Schmidt and T. Maier, Carbohydr. Res., 1988, 174, 169; (b) R. Wild and R. R. Schmidt, Tetrahedron Asymm., 1994, 5, 2195.

9 P. Rollin and J.-R. Pougny, Tetrahedron, 1986, 42, 3479.
10 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3769
11 W.-L. Cheng, S.-M. Yeh and T.-Y. Luh, J. Org. Chem., 1993, 58, 5576.

